The Weak Field Limit of the Magnetorotational Instability
نویسندگان
چکیده
We investigate the behavior of the magneto-rotational instability in the limit of extremely weak magnetic field, i.e., as the ratio of ion cyclotron frequency to orbital frequency (X) becomes small. Considered only in terms of cold two-fluid theory, instability persists to arbitrarily small values of X, and the maximum growth rate is of order the orbital frequency except for the range me/mi < |X| < 1, where it can be rather smaller. In this range, field aligned with rotation (X > 0) produces slower growth than anti-aligned field (X < 0). The maximum growth rate is generally achieved at smaller and smaller wavelengths as |X| diminishes. When |X| < me/mi, new unstable “electromagnetic-rotational” modes appear that do not depend on the equilibrium magnetic field. Because the most rapidlygrowing modes have extremely short wavelengths when |X| is small, they are often subject to viscous or resistive damping, which can result in suppressing all but the longest wavelengths, for which growth is much slower. We find that this sort of damping is likely to curtail severely the frequently-invoked mechanism for cosmological magnetic field growth in which a magnetic field seeded by the Biermann battery is then amplified by the magneto-rotational instability. On the other hand, the small |X| case may introduce interesting effects in weakly-ionized disks in which dust grains carry most of the electric charge.
منابع مشابه
The Stability of Magnetized Rotating Plasmas with Superthermal Fields
ABSTRACT During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper, we investigate the local linear stability of differentially rotating, magnetized flows and the evolution of the magnetorotational instability beyond the we...
متن کاملFinite Larmor Radius Effects on the Magnetorotational Instability
The linear dispersion relation for the magnetorotational instability (MRI) is derived including finite Larmor radius (FLR) effects. In particular, the Braginskii form of the ion gyroviscosity, which represents the first-order FLR corrections to the two-fluid equations, is retained. It is shown that FLR effects are the most important effects in the limit of weak magnetic fields, and are much mor...
متن کاملThe Balbus-Hawley instability in weakly ionised discs
MHD in protostellar discs is modified by the Hall current when the ambipolar diffusion approximation breaks down. Here I examine the Balbus-Hawley (magnetorotational) instability of a weak, vertical magnetic field within a weakly-ionised disc. Vertical stratification is neglected, and a linear analysis is undertaken for the case that the wave vector of the perturbation is parallel to the magnet...
متن کاملThe Balbus-Hawley instability in weakly ionized discs
MHD in protostellar discs is modified by the Hall current when the ambipolar diffusion approximation breaks down. Here I examine the Balbus-Hawley (magnetorotational) instability of a weak, vertical magnetic field within a weakly-ionized disc. Vertical stratification is neglected, and a linear analysis is undertaken for the case that the wave vector of the perturbation is parallel to the magnet...
متن کاملThe Magnetorotational Instability in a Collisionless Plasma
We consider the linear axisymmetric stability of a differentially rotating collisionless plasma in the presence of a weak magnetic field; we restrict our analysis to wavelengths much larger than the proton Larmor radius. This is the kinetic version of the magnetorotational instability explored extensively as a mechanism for magnetic field amplification and angular momentum transport in accretio...
متن کاملAn asymptotically exact reduced PDE model for the magnetorotational instability: derivation and numerical simulations
Taking advantage of disparate spatio-temporal scales relevant to astrophysics and laboratory experiments, we derive asymptotically exact reduced partial differential equation models for the magnetorotational instability. These models extend recent single-mode formulations leading to saturation in the presence of weak dissipation, and are characterized by a back-reaction on the imposed shear. Nu...
متن کامل